Topic

Classification & Introduction to Taxonomy

Classification

- The grouping of objects or information based on similarities
- There are more than 1 million described species of plants and animals
 - –Many millions still left undescribed

Taxonomy

 Science of classification (grouping things) Process of classifying biodiversity based on evolutionary relationships Means to organize biological diversity Groups and names organisms based on different **characteristics**

Early Taxonomic Systems

Aristotle (350 B.C.)

- Developed the 1st widely accepted system of biological classification
- Everything grouped as plant or animal

Early Taxonomic Systems

- Carolus Linnaeus (1753)- use of a species name
- Based on looking at physical and structural similarities
 - Revealed relationships of organisms
- <u>Binomial nomenclature</u>
 - Gave each species 2 names (scientific name)
 - Genus and species
 - Genus is a group of similar species
- Developed the modern system of taxonomy

 Latin was the language used (no longer used and is not being changed) – Genus name
→ always capitalized – species name
 always lowercase both names MUST be underlined or italicized - Ex: Canis lupus (wolf)

-Ex: Homo sapiens (human)

Ex: Felis domesticus (housecat) Felis domesticus var. Indicates more than one variety

- Scientific names are often: –Descriptive (<u>Acer rubrum</u> → red maple) –Named after someone (genus -> Linnea) Descriptive of where an organism lives (<u>D. californica)</u> Named after person who first described the organism (D. californica Torr) Many organisms have common names –Can be misleading -Can have more than 1 common name,
 - depending on the area it is found in

Modern Taxonomy

- Now based on evolutionary relationships
- Taxonomists study:
 - -Structural similarities
 - Chromosomal structure (karyotypes)
 - Reproductive potential
 - **Biochemical similarities**
 - Comparing DNA and amino acids
 Embryology/development
 - -Breeding behavior
 - Geographic distribution

7 taxonomic categories:

Kingdom \rightarrow largest, most general group Phylum \rightarrow called a division with plants Class Order Family Genus Species → smallest, most specific group

- Grouped genera into families, families into orders, orders into classes, classes into phyla, and phyla into kingdoms
- Species can interbreed with each other

1969: 5-Kingdom System

- Monera, Protista, and Fungi kingdoms added to the 2 established kingdoms
- Kingdoms defined based on 2 main characteristics
 - Possession of a true nucleus (prokaryote or eukaryote)
 - How it gets food
 - Heterotroph
 - Autotroph
 - Decomposer

1980' s: 3-Domain System

 Bacteria have distinct differences All eukaryotic kingdoms grouped into one domain (Eukarya) Monera kingdom split into 2 domains (Archaea and **Eubacteria**)

How Living Things are Classified

- Groups of organisms called taxa or taxons
- Organisms arranged in groups ranging from very broad to very specific characteristics
 - Broader taxons have more general characteristics and more species within it
 - Smallest taxon → Species
 - Largest taxon → Kingdom

Phylogeny

a family tree for the evolutionary history of a species

- The root of the tree represents the ancestral lineage
 - Tips of the branches represent descendents of the ancestor
- Movement upward shows forward motion through time
- <u>Speciation</u>: split in the lineage
- Shown as a branching of the tree

Cladistics

System of classification based on phylogeny
 Derived characteristics/traits: appear in recent parts of a lineage but not in older members

Cladogram

- A branching diagram to show the evolutionary history of a species
- Helps scientists understand how one lineage branched from another in the course of evolution

Dichotomous Key

- Way of identifying organisms by looking at the physical characteristics
- Uses a series of questions to group into a hierarchy classification

1a	Gram-positive	Go to 2
1b	Not Gram-positive	Go to 3
2a	Cells spherical in shape	Gram-positive cocci
2b	Cells not spherical in shape	Go to 4
3a	Gram-negative	Go to 5
3b	Not Gram-negative (lack cell wall)	Mycoplasma
4a	Cells rod-shaped	Gram-positive bacilli
4b	Cells not rod-shaped	Go to 6
5a	Cells spherical in shape	Gram-negative cocci
5b	Cells not spherical in shape	Go to 7
5b	Cells not spherical in shape	Go to 7
6a	Cells club-shaped	Corynebacteria
6b	Cells variable in shape	Propionibacteria
5b	Cells not spherical in shape	Go to 7
6a	Cells club-shaped	Corynebacteria
6b	Cells variable in shape	Propionibacteria
7a	Cells rod-shaped	Gram-negative bacilli
7b	Cells not rod-shaped	Go to 8

- **Prokaryotes:**
 - Microscopic
 - Prokaryotic (Lack a nucleus)
 - Can be autotrophs (photosynthetic or chemosynthetic) or heterotrophs
 - Unicellular

2 kingdoms (Archaebacteria and Eubacteria)

- Archaebacteria live in extreme environments like swamps, deep-ocean hydrothermal vents (oxygenfree environments)
 - Cell walls not made of peptidoglycan
 - Ex: Methanogens, Halophiles
 - Eubacteria live in most habitats
 - Cell walls made of peptidoglycan
 - Ex: <u>E. coli</u>, <u>Streptococcus</u>, cyanobacteria

Protista

- Eukaryotic (has a nucleus)
- Some have cell walls of cellulose
 - Some have chloroplasts

- Can be autotrophs or heterotrophs (some can be fungus-like)
- Most are unicellular; some are multicellular or colonial
- Ex: amoeba, paramecium, slime molds, euglena, kelp
- Lacks complex organ systems
- Lives in moist environments

- Fungi Eukaryotes Cell walls of chitin Heterotrophs Most multicellular; some unicellular Ex: mushrooms, yeast **Absorbs nutrients from** organic materials in the environment
- Stationary

Plants

- Eukaryotes
- Cell walls of cellulose
- Autotrophs
- Multicellular
- Photosynthetic-> contains chloroplasts
- Ex: mosses, ferns, trees, flowering plants
- Cannot move
- Tissues and organ systems

<u>Animalia</u>

- Eukaryotes
- Do not have a cell wall or chloroplasts
- Heterotrophs
- Multicellular
- Ex: sponges, worms, insects, fish, mammals (nurse young)
- Mobile

